亚洲岛国日韩视频|一区二区三区AV片|久久综合 伊人AV|青春草在线观看精品免费视频,青青网免费无码在线,久久亚洲国产成人精品性色,99视频在线观看免费

師資

EN       返回上一級       師資搜索
馬梓銘
副教授

學(xué)歷

(1) 香港中文大學(xué), 數(shù)學(xué), 博士, 導(dǎo)師: 梁乃聰

(2) 香港中文大學(xué), 數(shù)學(xué), 碩士, 導(dǎo)師: 梁乃聰

(3) 香港中文大學(xué), 數(shù)學(xué), 學(xué)士


工作經(jīng)歷

(1) 2021-8至今, 南方科技大學(xué), 助理教授,副教授

(2) 2018-2至2021-7, 香港中文大學(xué), 數(shù)學(xué)系, 研究人員

(3) 2017-10至2017-12, 清華大學(xué), 丘成桐數(shù)學(xué)科學(xué)中心, 訪問學(xué)者

(4) 2015-8至2017-7, 臺灣大學(xué), 數(shù)學(xué)系, 助理教授

(5) 2015-3至2015-6, 清華大學(xué), 訪問學(xué)者

(6) 2014-8至2015-1, 哈佛大學(xué), 博士后


Publications

11. Tropical Lagrangian multi-sections and smoothing of locally free sheaves on degenerated Calabi-Yau surfaces, (with K. W. Chan and Y. H. Suen) submitted. 

10. Smoothing Pairs Over Degenerate Calabi–Yau Varieties (with K. W. Chan), International Mathematics Research Notices , rnaa212, 2020, https://doi.org/10.1093/imrn/rnaa212 .

9. Geometry of Maurer-Cartan equation near degenerate Calabi-Yaus (with K. W. Chan And N. C. Leung), accepted for publication in Journal of Differential Geometry.

8. Fukaya's conjecture on $S^1$-equivariant de Rham complex, submitted.

7. Fukaya's conjecture on Witten's twisted A_\infty structures, with Kaileung Chan and Naichung Conan Leung, J. Differential Geom. 118(3): 399-455 (July 2021). DOI: 10.4310/jdg/1625860622 . 

6. Scattering diagram from asymptotic analysis on Maurer-Cartan equations, with Kwokwai Chan and Naichung Conan Leung, Journal of the European Mathematical Society, 2021, DOI: 10.4171/JEMS/1100. 

5. Tropical counting from asymptotic analysis on Maurer-Cartan equations, with Kwokwai Chan, Transactions of the American Mathematical Society, 2020, https://doi.org/10.1090/tran/8128. 

4. Theta functions from asymptotic analysis on Maurer-Cartan equations, with Matthew Bruce Young and Naichung Conan Leung, International Mathematics Research Notices, rnz220, 2019, https://doi.org/10.1093/imrn/rnz220. 

3. SYZ mirror symmetry from Witten-Morse theory, to be appeared in CMA proceedings. 

2. Lattice points counting via Einstein metrics, with Naichung Conan Leung, Journal of Differential geometry 92 (2012), no. 1, 55-69.

1. Flat branes on tori and Fourier transform in the SYZ programme, with Kaileung Chan and Naichung Conan Leung, Proceedings of the G"okova Geometry-Topology Conference (2011), page 1-31, International press.



理塘县| 营口市| 鲁山县| 新安县| 清徐县| 元阳县| 陇南市| 乌鲁木齐市| 灵丘县| 扎囊县| 万年县| 湟中县| 拜城县| 漠河县| 阳东县| 沙湾县| 星子县| 荥经县| 邳州市| 长寿区| 普陀区| 正阳县| 昌江| 镇平县| 万盛区| 永川市| 临朐县| 江北区| 上栗县| 曲阜市| 凯里市| 砚山县| 江达县| 彭水| 海原县| 丹凤县| 合川市| 余江县| 吉水县| 丰原市| 千阳县|