亚洲岛国日韩视频|一区二区三区AV片|久久综合 伊人AV|青春草在线观看精品免费视频,青青网免费无码在线,久久亚洲国产成人精品性色,99视频在线观看免费

Faculty

中文       Go Back       Search
TANG Hao
Research Assistant Professor

Dr. Hao TANG currently is a Research Assistant Professor of Department of Biomedical Engineering in Southern University of Science and Technology (SUSTech). His research interests include nano-biomedicine, drug delivery and biomedical polymers, etc. He received his Ph.D. degree in Beijing University of Chemical Technology in 2018. He began to work as a postdoc at SUSTech/Southeast University in 2018 and was promoted to a senior research scholar in 2020. He has been awarded "High-Level Professional in Shenzhen". He has published more than 10 academic papers in scientific journals including Angew. Chem. Int. Ed,Adv. Drug Delivery Rev.,Biomacromolecules,Chinese J. Polym. Sci., with more than 100 citations. He has chaired Youth Program funded by National Natural Science Foundation of China and General Program funded by China Postdoctoral Science Foundation.

 

Education

2013.09-2018.06, PhD in Chemical Engineering and Technology, Beijing University of Chemical Technology

2009.09-2013.06, Bachelor in Material Science and Engineering, Southwest Jiaotong University

 

Working Experiences

2021.09-now, Research Assistant Professor, Southern University of Science and Technology

2020.12-2021.09, Senior Research Scholar, Southern University of Science and Technology

2018.12-2020.11, Postdoctoral Fellow, Southern University of Science and Technology /Southeast University


Representative publications

[14] H. Tang, Q. Li, W. Yan, X. Jiang*, Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters, Angew. Chem. Int. Ed. 2021, 60, 13829.

[13] H. Tang, X. Zhao, X. Jiang*, Synthetic Multi-layer Nanoparticles for CRISPR-Cas9 Genome Editing, Adv. Drug Delivery Rev. 2021, 168, 55-78.

[12] M. Chen, R. Dong, J. Zhang, H. Tang, Q. Li, H. Shao*, X. Jiang*, Nanoscale Metal–Organic Frameworks That are Both Fluorescent and Hollow for Self-Indicating Drug Delivery, ACS Appl. Mater. Interfaces 2021, 13(16), 18554–18562.

[11] X. Li, M. Zha, Y. Li, J. Ni, T. Min, T. Kang, G. Yang, H. Tang, K. Li*, X. Jiang*, Sub-10 nm Aggregation-Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor-Targeting and Reduced Retention in the Liver, Angew. Chem. Int. Ed. 2020, 59, 21899.

[10] X. Zhao, J. Jia, R. Dong, J. Deng, H. Tang, F. Hu, S. Liu*, X. Jiang*, Bimetallic Nanoparticles against Multi-drug Resistant Bacteria, Chem. Commun. 2020, 56, 10918-1092.

[9] Y. Yang, Y. Chen, H. Tang, N. Zong, X. Jiang*, Microfluidics for Biomedical Analysis, Small Methods 2020, 4, 1900451.

[8] H. Tang, J. Zhang, J. Tang, Y. Shen, W. Guo, M. Zhou, R. Wang, N. Jiang, Z. Gan*, Q. Yu*, Tumor Specific and Renal Excretable Star-like Triblock Polymer–Doxorubicin Conjugates for Safe and Efficient Anticancer Therapy, Biomacromolecules 2018, 19(7), 2849-2862.

[7] H. Tang, J. Tang, Y. Shen, W. Guo, M. Zhou, R. Wang, N. Jiang, Z. Gan*, Q. Yu*, Comb-like Poly (N-(2-hydroxypropyl) methacrylamide) Doxorubicin Conjugates: The Influence of Polymer Architecture and Composition on the Biological Properties, Chinese J. Polym. Sci. 2018, 36(11), 1225–1238.

[6] J. Zhang, H. Tang, Y. Shen, Q. Yu*, Z. Gan*, Shell-Sheddable Poly (N-2-hydroxypropyl methacrylamide) Polymeric Micelles for Dual-Sensitive Release of Doxorubicin, Macromol. Rapid Comm. 2018, 1800139.

[5] J. Liu, H. Tang, P. Mi*, Y. Wei*, Current Status and Prospect of Cancer Nanomedicine in Clinical Translation, Sci. Technol. Rev. 2018, 36 (22), 118-126.

[4] T. Shen, X. Xu, L. Guo, H. Tang, T. Diao, Z. Gan, G. Zhang*, Q. Yu*, Efficient Tumor Accumulation, Penetration and Tumor Growth Inhibition Achieved by Polymer Therapeutics: The Effect of Polymer Architectures, Biomacromolecules 2017, 18(1), 217-230.

[3] X. Yan, Q. Yu*, L. Guo, W. Guo, S. Guan, H. Tang, S. Lin, Z. Gan*, Positively Charged Combinatory Drug Delivery Systems against Multi-Drug-Resistant Breast Cancer: Beyond the Drug Combination, ACS Appl. Mater. Interfaces 2017, 9(8), 6804-6815.

[2] N. Du, W. Guo, Q. Yu*, S. Guan, L. Guo, T. Shen, H. Tang, Z. Gan*, Poly (d, l-lactic acid)-block-poly (N-(2-hydroxypropyl) methacrylamide) Nanoparticles for Overcoming Accelerated Blood Clearance and Achieving Efficient Anti-tumor Therapy, Polym. Chem. 2016, 7(36), 5719-5729.

[1] Q. Yu, Z. Wei, J. Shi, S. Guan, N. Du, T. Shen, H. Tang, B. Jia, F. Wang, Z. Gan*, Polymer–Doxorubicin Conjugate Micelles Based on Poly (ethylene glycol) and Poly (N-(2-hydroxypropyl) methacrylamide): Effect of Negative Charge and Molecular Weight on Biodistribution and Blood Clearance, Biomacromolecules 2015, 16(9), 2645-2655.


广汉市| 开原市| 旬邑县| 虎林市| 南木林县| 怀宁县| 凤山县| 依兰县| 南郑县| 延津县| 桂阳县| 乌兰浩特市| 博野县| 庄浪县| 吕梁市| 达拉特旗| 长治市| 西盟| 宁南县| 桃园市| 巴东县| 潼关县| 永清县| 太和县| 珠海市| 那曲县| 泰州市| 万宁市| 于田县| 淮阳县| 沽源县| 固镇县| 潜江市| 嘉义市| 临西县| 翁源县| 开远市| 鸡泽县| 伊川县| 禄丰县| 新巴尔虎右旗|