亚洲岛国日韩视频|一区二区三区AV片|久久综合 伊人AV|青春草在线观看精品免费视频,青青网免费无码在线,久久亚洲国产成人精品性色,99视频在线观看免费

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:[email protected]

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


宜良县| 寿阳县| 兰考县| 华宁县| 通海县| 通山县| 昌平区| 乌海市| 安阳县| 嘉黎县| 太白县| 鹤壁市| 保定市| 宁化县| 汝州市| 吉木乃县| 福建省| 灯塔市| 板桥市| 林周县| 兰州市| 平陆县| 泰兴市| 南宁市| 巫溪县| 堆龙德庆县| 东明县| 阳西县| 美姑县| 边坝县| 眉山市| 眉山市| 三明市| 桃园县| 衡东县| 赤壁市| 嘉鱼县| 望江县| 科技| 吴旗县| 万山特区|